深入解析MySQL的窗口函數(shù)
對一個成熟的數(shù)據(jù)分析師來說,窗口函數(shù)可以大幅提高查詢效率,且SQL代碼優(yōu)雅。
窗口可以理解為記錄集合,窗口函數(shù)就是在滿足某種條件的記錄集合上執(zhí)行的特殊函數(shù)。 即:應(yīng)用在窗口內(nèi)的函數(shù)。
靜態(tài)窗口:每條記錄都要在此窗口內(nèi)執(zhí)行函數(shù),窗口大小都是固定的。
動態(tài)窗口:不同的記錄對應(yīng)著不同的窗口,這種動態(tài)變化的窗口叫滑動窗口。
二、語法格式函數(shù)名(字段名) over(子句)over()括號內(nèi)若不寫,則意味著窗口函數(shù)基于滿足where條件的所有行進(jìn)行計算。
若括號內(nèi)不為空,則支持以下語法來設(shè)置窗口。
函數(shù)名(字段名) over(partition by <要分列的組> order by <要排序的列> rows between <數(shù)據(jù)范圍>)數(shù)據(jù)范圍:
rows between 2 preceding and current row # 取本行和前面兩行rows between unbounded preceding and current row # 取本行和之前所有的行 rows between current row and unbounded following # 取本行和之后所有的行 rows between 3 preceding and 1 following # 從前面三行和下面一行,總共五行 # 當(dāng)order by后面沒有rows between時,窗口規(guī)范默認(rèn)是取本行和之前所有的行# 當(dāng)order by和rows between都沒有時,窗口規(guī)范默認(rèn)是分組下所有行(rows between unbounded preceding and unbounded following) 三、分類1、聚合類聚合窗口函數(shù)與普通聚合函數(shù)的區(qū)別:
普通場景下的聚合函數(shù)是將多條記錄聚合為一條**(多到一);**窗口函數(shù)是每條記錄都會執(zhí)行,有幾條記錄執(zhí)行完還是幾條**(多到多)**。接下來通過解決具體需求來讓大家更加了解窗口函數(shù)的用法,希望大家閱讀完能動手練習(xí)。 先創(chuàng)建user_trade表:-- 現(xiàn)有2018~2020某電商平臺訂單信息表user_tradecreate table user_trade ( user_name varchar(20) COMMENT '用戶名', piece int COMMENT '購買數(shù)量', price double COMMENT '價格', pay_amount double COMMENT '支付金額', goods_category varchar(20) COMMENT '商品品類', pay_time date COMMENT '支付日期');從navicat中導(dǎo)入以下數(shù)據(jù)源:
user_trade數(shù)據(jù)源:https://gitee.com/hu-weiqing/datasource/blob/master/user_trade.xlsx
數(shù)據(jù)隨機(jī)展示10條如下:
累計求和:sum()over()-- 需求1: 查詢出2019年每月的支付總額和當(dāng)年累積支付總額 select a.mon,a.pay_amount,sum(a.pay_amount) over(order by a.mon) as sum_amountfrom(select month(a.pay_time) as mon,sum(a.pay_amount) as pay_amountfrom user_trade awhere year(a.pay_time) = '2019'group by month(a.pay_time)) a ;-- 需求2:查詢出2018-2019年每月的支付總額和當(dāng)年累積支付總額select a.*,sum(a.pay_amount) over(partition by a.year order by a.mon) as sum_amountfrom(select year(a.pay_time) as year,month(a.pay_time) as mon,sum(a.pay_amount) as pay_amountfrom user_trade awhere year(a.pay_time) in('2018','2019')group by year(a.pay_time),month(a.pay_time)) a ;需求1運(yùn)行結(jié)果(部分)
需求2運(yùn)行結(jié)果(部分)
移動平均:avg() over()-- 需求3: 查詢出2019年每個月的近三月移動平均支付金額select a.mon,a.pay_amount,avg(a.pay_amount) over(order by a.mon rows between 2 preceding and current row) as avg_amountfrom(select month(a.pay_time) as mon,sum(a.pay_amount) as pay_amountfrom user_trade awhere year(a.pay_time) = '2019'group by month(a.pay_time)) a ;需求3運(yùn)行結(jié)果(部分)
最大/最小值:max()/min() over()-- 需求4: 查詢出每四個月的最大月總支付金額select a.mon,a.pay_amount,max(a.pay_amount) over(order by a.mon rows between 3 preceding and current row) as max_amountfrom(select SUBSTRING(a.pay_time,1,7) as mon,sum(a.pay_amount) as pay_amountfrom user_trade agroup by SUBSTRING(a.pay_time,1,7))a ;需求4運(yùn)行結(jié)果(部分)
2、排序類row_number()、rank() 和dense_rank()-- 需求4: 查詢出每四個月的最大月總支付金額select a.mon,a.pay_amount,max(a.pay_amount) over(order by a.mon rows between 3 preceding and current row) as max_amountfrom(select SUBSTRING(a.pay_time,1,7) as mon,sum(a.pay_amount) as pay_amountfrom user_trade agroup by SUBSTRING(a.pay_time,1,7))a ;需求5運(yùn)行結(jié)果(部分)
row_number()、rank() 和dense_rank() 三種排序函數(shù)的區(qū)別:
row_number:每一行記錄生成一個序號,依次排序且不會重復(fù)。 12345…
rank:跳躍排序,生成的序號有可能不連續(xù)。11345…
dense_rank:在生成序號時是連續(xù)的。11234…
ntile(n)over()ntile(n)用于將分組數(shù)據(jù)按照順序切分成n片,返回當(dāng)前切片值. n表示切片的數(shù)量; 不支持rows between
-- 需求6: 查詢出將2020年2月的支付用戶,按照支付金額分成5組后的結(jié)果select a.user_name,sum(a.pay_amount) as pay_amount,ntile(5) over(order by sum(a.pay_amount) desc) as levelfrom user_trade awhere SUBSTRING(a.pay_time,1,7) = '2020-02'group by a.user_name;-- 需求7: 查詢出2020年支付金額排名前30%的所有用戶select a.user_name,a.pay_amountfrom (select a.user_name,sum(a.pay_amount) as pay_amount,ntile(10) over(order by sum(a.pay_amount) desc) as levelfrom user_trade awhere year(a.pay_time) = '2020'group by a.user_name) a where a.level in(1,2,3);需求6運(yùn)行結(jié)果(部分)
需求7運(yùn)行結(jié)果(部分)
3、偏移分析函數(shù)lag() over()向上偏移lag(exp_str,offset,defval) exp_str:字段名 offset:偏移量 defval:默認(rèn)值。當(dāng)向上偏移了offset行已經(jīng)超出了表的范圍時,lag()函數(shù)將defval這個參數(shù)值作為函數(shù)的返回值,若沒有指定默認(rèn)值,則返回NULL。
-- 需求8: 查詢出King和West的時間偏移(前N行)select a.user_name,a.pay_time,lag(a.pay_time,1,a.pay_time) over(partition by a.user_name order by a.pay_time) as lag1,-- 沒有傳入偏移量,那么默認(rèn)就是1,找不到的話,此處也沒有給默認(rèn)值,為nulllag(a.pay_time) over(partition by a.user_name order by a.pay_time) as lag2,lag(a.pay_time,2,a.pay_time) over(partition by a.user_name order by a.pay_time) as lag3,lag(a.pay_time,2) over(partition by a.user_name order by a.pay_time) as lag4from user_trade a where a.user_name in('King','West');需求8運(yùn)行結(jié)果
lead() over()向下偏移用法同lag()over()函數(shù)。
補(bǔ)充練習(xí):
-- 需求9: 查詢出支付時間間隔超過100天的用戶數(shù)select count(distinct a.user_name)from (select a.user_name,a.pay_time,lag(a.pay_time) over(partition by a.user_name order by a.pay_time) as lgfrom user_trade a ) a where DATEDIFF(a.pay_time,a.lg) >100;# 需求9運(yùn)行結(jié)果為180-- 需求10: 查詢出每年支付時間間隔最長的用戶select c.years,c.user_name,c.pay_days from(select b.years,b.user_name,datediff(b.pay_time,b.lg) as pay_days,rank() over(partition by b.years order by datediff(b.pay_time,b.lg) desc) as rk from (select year(a.pay_time) as years,a.user_name,a.pay_time,lag(a.pay_time) over(partition by a.user_name,year(a.pay_time) order by a.pay_time) as lgfrom user_trade a ) b where b.lg is not null) c where c.rk = 1;需求10運(yùn)行結(jié)果
窗口函數(shù)在數(shù)據(jù)分析師的工作中應(yīng)用非常廣,如果不會窗口函數(shù),很可能同樣的需求用普通表關(guān)聯(lián)寫需要關(guān)聯(lián)很多張表,導(dǎo)致性能不好,查詢速度非常慢。
到此這篇關(guān)于深入解析MySQL的窗口函數(shù)的文章就介紹到這了,更多相關(guān)MySQL窗口函數(shù)內(nèi)容請搜索好吧啦網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持好吧啦網(wǎng)!
相關(guān)文章:
