av一区二区在线观看_亚洲男人的天堂网站_日韩亚洲视频_在线成人免费_欧美日韩精品免费观看视频_久草视

您的位置:首頁(yè)技術(shù)文章
文章詳情頁(yè)

python 的numpy庫(kù)中的mean()函數(shù)用法介紹

瀏覽:73日期:2022-08-04 14:00:54

1. mean() 函數(shù)定義:

numpy.mean(a, axis=None, dtype=None, out=None, keepdims=<class numpy._globals._NoValue at 0x40b6a26c>)[source]Compute the arithmetic mean along the specified axis.

Returns the average of the array elements. The average is taken over the flattened array by default, otherwise over the specified axis. float64intermediate and return values are used for integer inputs.

Parameters:

a : array_like

Array containing numbers whose mean is desired. If a is not an array, a conversion is attempted.

axis : None or int or tuple of ints, optional

Axis or axes along which the means are computed. The default is to compute the mean of the flattened array.

New in version 1.7.0.

If this is a tuple of ints, a mean is performed over multiple axes, instead of a single axis or all the axes as before.

dtype : data-type, optional

Type to use in computing the mean. For integer inputs, the default is float64; for floating point inputs, it is the same as the input dtype.

out : ndarray, optional

Alternate output array in which to place the result. The default is None; if provided, it must have the same shape as the expected output, but the type will be cast if necessary. See doc.ufuncs for details.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array.

If the default value is passed, then keepdims will not be passed through to the mean method of sub-classes of ndarray, however any non-default value will be. If the sub-classes sum method does not implement keepdims any exceptions will be raised.

Returns:

m : ndarray, see dtype parameter above

If out=None, returns a new array containing the mean values, otherwise a reference to the output array is returned.

2 mean()函數(shù)功能:求取均值

經(jīng)常操作的參數(shù)為axis,以m * n矩陣舉例:

axis 不設(shè)置值,對(duì) m*n 個(gè)數(shù)求均值,返回一個(gè)實(shí)數(shù)

axis = 0:壓縮行,對(duì)各列求均值,返回 1* n 矩陣

axis =1 :壓縮列,對(duì)各行求均值,返回 m *1 矩陣

舉例:

>>> import numpy as np>>> num1 = np.array([[1,2,3],[2,3,4],[3,4,5],[4,5,6]])>>> now2 = np.mat(num1)>>> now2matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5], [4, 5, 6]])>>> np.mean(now2) # 對(duì)所有元素求均值3.5>>> np.mean(now2,0) # 壓縮行,對(duì)各列求均值matrix([[ 2.5, 3.5, 4.5]])>>> np.mean(now2,1) # 壓縮列,對(duì)各行求均值matrix([[ 2.], [ 3.], [ 4.], [ 5.]])

補(bǔ)充拓展:numpy的np.nanmax和np.max區(qū)別(坑)

numpy的np.nanmax和np.array([1,2,3,np.nan]).max()的區(qū)別(坑)

numpy中numpy.nanmax的官方文檔

原理

在計(jì)算dataframe最大值時(shí),最先用到的一定是Series對(duì)象的max()方法(),最終結(jié)果是4。

s1 = pd.Series([1,2,3,4,np.nan])s1_max = s1.max()

但是筆者由于數(shù)據(jù)量巨大,列數(shù)較多,于是為了加快計(jì)算速度,采用numpy進(jìn)行最大值的計(jì)算,但正如以下代碼,最終結(jié)果得到的是nan,而非4。發(fā)現(xiàn),采用這種方式計(jì)算最大值,nan也會(huì)包含進(jìn)去,并最終結(jié)果為nan。

s1 = pd.Series([1,2,3,4,np.nan])s1_max = s1.values.max()>>>nan

通過(guò)閱讀numpy的文檔發(fā)現(xiàn),存在np.nanmax的函數(shù),可以將np.nan排除進(jìn)行最大值的計(jì)算,并得到想要的正確結(jié)果。

當(dāng)然不止是max,min 、std、mean 均會(huì)存在列中含有np.nan時(shí),s1.values.min /std/mean ()返回nan的情況。

速度區(qū)別

速度由快到慢依次:

s1 = pd.Series([1,2,3,4,5,np.nan])#速度由快至慢np.nanmax(s1.values) > np.nanmax(s1) > s1.max()

以上這篇python 的numpy庫(kù)中的mean()函數(shù)用法介紹就是小編分享給大家的全部?jī)?nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持好吧啦網(wǎng)。

標(biāo)簽: Python 編程
相關(guān)文章:
主站蜘蛛池模板: 精品99视频 | 欧洲精品一区二区 | 欧美激情视频一区二区三区 | 国产精品三 | 欧美视频久久 | 日韩av一级片 | 欧美人与性动交α欧美精品 | 黄色一级视频 | 中文在线观看免费视频 | 日韩成人免费视频 | 欧美激情一区二区三区 | 午夜av在线| 亚洲精品aaa | 99视频网 | 亚洲久久视频 | 国产激情视频在线 | 天天插夜夜操 | 国产精品国产精品国产专区不片 | 韩日一级片 | 黄色免费网站在线观看 | 国产一级片免费 | 国产一区亚洲 | 成人做爰免费视频免费看 | 久久久久久久久久久国产 | 亚洲小视频 | 久久999| 少妇在线| 久久视频一区二区 | 91精品国产一区二区三区 | 97精品国产 | 在线播放国产精品 | 欧美视频在线观看 | 天天噜 | 在线观看二区 | 日韩少妇| 最新国产精品 | 欧美日韩少妇 | a级一级片| 国产欧美久久久 | 亚洲免费专区 | 玖玖在线观看 |